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On the basis of the thermodynamics of irreversible processes, an
expression is derived for the thermal conductivity of a chemically
reacting gas mixture,

The thermal conductivity of a chemically reacting
gas mixture is considerably greater than that of a
nonreacting gas. The reason for the increase was first
pointed out by Nernst {1], who examined the dissocia-
tion of nitrogen tetroxide.

In contrast to a nonreacting gas, in which heat is
transmitted mainly by collisons of molecules and the
heat flux vector is proportional to the temperature
field gradient, there arises in a reacting gas mixture
an additional heat flux transferred as chemical en-
thalpy of the molecules diffusing due to the concentra-
tion gradient produced in the reaction.

In a number of papers [2-5] the expression pro-
posed by Nernst for the thermal conductivity has since
been refined, and simple cases of chemical reactions
of the type A = 2B have been examined.

In the steady state, and in the presence of chemical
equilibrium, the effective thermal conductivity is

Ay =hp 42D — Arp. (1)

This expression contains three terms: the ordinary
thermal conductivity Ap,, the "diffusion" conductivity
Ap due to the chemical reaction, and, finally, the
term Arp connected with thermodiffusion and the
Dufour effect. Substituting values of the respective
components of the conductivity [2] into (1), we obtain

H%C,C,
RZT:S

Hg

Ay =hm+Dp —2D,p - 2

The topic of this paper is an examination of the most
general case—the thermal conductivity of a gas re-
acting according to the scheme 4 = B+ C.

Let the gas mixture be located between two plates
at temperatures T and T + AT, Since there is a
temperature gradient between the plates, in the
presence of a reaction a concentration gradient of
dissociated and undissociated molecules arises at
every point in space. Then the heavy undissociated
molecules diffuse into the region at the higher tem-
perature and there dissociate, absorbing heat. Con-
versely, the light dissociation products diffuse into
the lower-temperature region and there recombine,
emitting heat. As a result of mutual diffusion inthis
cyclic process, heat transfer increases in the direc-
tion opposite to the temperature gradient. In examin-
ing the thermal conductivity of reacting gases we

must also take into account thermodiffusion and the
Dufour effect.

We shall examine the steady state of the above
cyclic process in a system reacting according to the
scheme A = B+ C. We shall introduce, for simplicity,
indices 1, 2, and 3, denoting respectively components
A, B, and C. We write the phenomenological equations
of transfer of mass and energy in the form

3
Ji= E LyXy + L, X, i=1,23, 3)
k=1

3
Ju = 2 LXy + I'uuxu' 4)
k=1

We write the values of the affinity quantities Xy
and X, in the absence of external forces, in the form

X, = — T grad (uy/T), (5)

1
X, =— - gradT. (6)

Taking (5) and (6) into account, we may write (3)
and (4) in the form

3 3
- 1
J'Z_EL‘ rad '(?L — L) — gradT, (7
‘ k=l‘ *e pk_r\k:l b ) T o "

3 3
/ 1
Jo=— E L gradp, +{2Luk pk_L‘"‘)T gradT. (8)

k=1 k=1

The chemical potential is a function of temperature,
pressure, and the r — 1 concentrations Xj

gradp, = —S,gradT + y,gradp + E (EEL) grad x;.(9)
=1 ax; Tp

Since the chemical potential is a function of ther — 1
concentrations, by substituting values of the chemical
potential gradient (9) into (7) and (8), the partial
derivative (Buk/axj)prr in the last term of (9) may be
eliminated in some way. We shall eliminate it in
such a way that (7) and (8) may be written in the form

3 3
, vl
J, = (2 L,TS, + E Ly = L) - grad T —  (10)
k=1

k=1
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NN ,,‘( p") grad x;, (10)
Hk-_—l 0x; J,r (Cont'd)

——

JL] = (2 LukSkT + E Luk Be hLuu>~;T' gFBdT -
31 \ L Opy (11
— Z " —b—_-) grad x;.
" X oT

Since the specific enthalpy hy = ui + TS, we finally
obtain

3

= <2 Lighy — Llu) ";.,‘ gradT —

k=]

3 3

BHES

j=1 k=1
jri

ad ) grad x;, (12)

J, = (iLth ~L,) JF grad T —

k=1

‘j a
— LEL“"( at’“ ) grad x;. (13)
i 12

It is assumed here that the system examined is in
mechanical equilibrium, i.e., grad p = 0, and that
the velocity of motion of the center of gravity of the
system V =0,

We introduce the transfer energy uk, determined
by the expression

3
Ly= Y Luw, i=1,2,3, (14)

then, taking (3) and (4) into account, and applying the
Onsager reciprocity principle, we can write the en-
ergy flux equation (4) as

Ly X, + L, X, (15)

P

n

w= U —
The first term on the right side of (15) is the energy
transferred by the mass flux, i.e., the transfer of
energy by diffusion and thermodiffusion. The second
term also describes energy transfer due to diffusion
and thermodiffusion. In the case of fast chemical
reactions the rate of diffusion is considerably less

than the rate of establishment of chemical equilibrium,

and the energy transfer process is limited by diffu-
sion, and not by the chemical reaction rate. There-
fore, for a steady state of the cyclic type, the first
and second terms of (15) are equal and cancel one
another. Then (15) takes the form

Jy= L. X, (15a)
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We shall examine the expression for the heat
flux, which is the difference between the energy flux
Jy and the heat flux carried by diffusion,

3
Jl?=']u'_2 hid. (16)

=l

In the case of no external forces the heat flux J, may
. ) q
be written in the form

n—1

L rad (uy — Uy

Jq:—.—-wiy_qgradT_Zi_(_u%._i)_r_‘ an
k=1

Substituting into (16) the values of J,, and J; from (12)
and (13), we obtain

3 3
Iy = (Z Loy — Ly, ‘—2 h; i Lih,+ i Lmh.‘\) X
k=1 =1 k=l i=1 ’

( AN ) grad x; +
pT

)gradx (18)

Applying the Onsager reciprocity principle, we
finally obtain

3 3

1,=— uu—22Lukhk+2h¢§jLahk)
i=1 k=1

~gradT EELUL(()”‘ ) grad x; —
pT

j= 11"]

3
EL ( u’?) grad x;. (19)

=L k=L

@M«»
*Mf»

Comparing (17) and (18), and bearing in mind that in
the case of mechanical equilibrium the second term
in (17) does not depend on the temperature gradient,
we obtain

3

R S P

For any multicomponent mixture, the expression
for the mass flux may be written in the following form
[6,7]:

J; ____Emm D.d; D‘T—%—gradT, i=1, 2 3 (21)

In the absence of external forces and with the condition
grad p = 0, the quantity dj is equal to the molar con-
centration gradient of the j-th component. Comparing
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coefficients with the gradients in (10) and (21), we
obtain the following relations for the diffusion and the
thermodiffusion coefficients of a three-component
system, expressed in terms of the phenomenological
coefficients:

3
a
D =— p L. B
! rmym; kE ‘k< Ax; pr' (22)

=1

3
Di =Ly, — ¥\ Luhs, (23)

k=1

where the molar chemical potential i for idealgases
may be written as

pe = (T, p)+ Inx,.
Here we must satisfy the symmetry conditions

Dzi = D]h Ly =Ly, L= Llu'

The phenomenological coefficients may be expressed
in terms of the diffusion coefficients of a multicom-
ponent mixture

nnmm é
L =_'_f’_[._pm.o + N nymiD ]
i o'p Dy ,; M m' (24)
k+j
Substituging (24) into (20), and taking (23) and the

condition 2 L,=0, into account, we obtain
{wm}

Ly Lyq —9 D} (hy — hy) + D} (he —hy) _
T

p
20 pT

n
2 Dyjmmy[ngnmm, (hy — ) -+ nyhymymy -

{,j=l
k=t.j

< (b B —(mpnymmy - ngnymemy + 2nmumy) (b — by (25)

We write (25) in the general form

Ay=Ayw—Ap +Ap, (26)
M= L/T, (27)

whgre
hop =2 [ D} (b — o) + D (hy — ho)|/T, (28)

Ap = Lszm-[n mym; (b, — hy)* +
D—-—QPPT UM (Tl (1 ¢

+ mym, (hy — b — (nymymy + npngmym, -+

+ 2ninmm;) (hy-- b)Y, (29)
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In (26) the first term represents the transfer of heat
by ordinary heat conduction, the second term—the
transfer of reaction enthalpy due to thermodiffusion
and the Dufour effect, and the third term—that due
to diffusion.

Expression (25), obtained for the first time, is
the general equation for calculating the effective
thermal conductivity of a three-~-component chemically
reacting gas mixture. The values of the diffusion and
the thermodiffusion components of the thermal con-
ductivity [equations (29) and 28)] appearing in (25),
contain the diffusion and thermodiffusion coefficients
for a multicomponent mixture.

NOTATION

xi—molar fraction of i-th component; Jy—energy

flux; ci—mass fraction of i-th component; Jgq—heat flux;
Ji—mass flux of i-th component; T—absolute tempera-
ture; uj—molar chemical potential of i-th component;
Lik, Luu, Lyi—phenomenological coefficients, asso-
ciated respectively with the transfer of mass and en-
ergy and with the superimposed effects; Xy and Xk—
thermodynamic forces associated with the mass and
energy fluxes; hj—enthalpy of i-th component; S—en-
tropy of i-th component; Djj—diffusion coefficient of a

multicomponent mixture; Dit —thermodiffusion coef-

ficient of i-th component in a multicomponent system;
u{T, p)—chemical potential in standard state; p—den-
sity; h—number density of mixture particles; hj—
number density of particles of i-th component; mj—
molecular weigh of i-th component; p—pressure of
mixture; vi—specific volume of i-th component; H—
heat of reaction; r—number of component of mixture;
R—gas constant; DT—thermodiffusion coefficient of a
binary mixture.
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